Topical Stance Detection for Twitter: A Two-Phase LSTM Model Using Attention

نویسندگان

  • Kuntal Dey
  • Ritvik Shrivastava
  • Saroj Kaushik
چکیده

The topical stance detection problem addresses detecting the stance of the text content with respect to a given topic: whether the sentiment of the given text content is in FAVOR of (positive), is AGAINST (negative), or is NONE (neutral) towards the given topic. Using the concept of attention, we develop a two-phase solution. In the first phase, we classify subjectivity whether a given tweet is neutral or subjective with respect to the given topic. In the second phase, we classify sentiment of the subjective tweets (ignoring the neutral tweets) whether a given subjective tweet has a FAVOR or AGAINST stance towards the topic. We propose a Long Short-Term memory (LSTM) based deep neural network for each phase, and embed attention at each of the phases. On the SemEval 2016 stance detection Twitter task dataset [6], we obtain a best-case macro F-score of 68.84% and a best-case accuracy of 60.2%, outperforming the existing deep learning based solutions. Our framework, T-PAN, is the first in the topical stance detection literature, that uses deep learning within a two-phase architecture.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Twitter Stance Detection - A Subjectivity and Sentiment Polarity Inspired Two-Phase Approach

The problem of stance detection from Twitter tweets, has recently gained significant research attention. This paper addresses the problem of detecting the stance of given tweets, with respect to given topics, from user-generated text (tweets). We use the SemEval 2016 stance detection task dataset. The labels comprise of positive, negative and neutral stances, with respect to given topics. We de...

متن کامل

Traffic Scene Analysis using Hierarchical Sparse Topical Coding

Analyzing motion patterns in traffic videos can be exploited directly to generate high-level descriptions of the video contents. Such descriptions may further be employed in different traffic applications such as traffic phase detection and abnormal event detection. One of the most recent and successful unsupervised methods for complex traffic scene analysis is based on topic models. In this pa...

متن کامل

Deep Stance and Gender Detection in Tweets on Catalan Independence@Ibereval 2017

This paper discusses deepyCybErNet submission methodology to the task on Stance and Gender Detection in Tweets on Catalan Independence@Ibereval 2017. The goal of the task is to detect the stance and gender of the user in tweets on the subject ”independence of Catalonia”. Tweets are available in two languages: Spanish and Catalan. In task 1 and 2, the system has to determine whether the tweet is...

متن کامل

Turing at SemEval-2017 Task 8: Sequential Approach to Rumour Stance Classification with Branch-LSTM

This paper describes team Turing’s submission to SemEval 2017 RumourEval: Determining rumour veracity and support for rumours (SemEval 2017 Task 8, Subtask A). Subtask A addresses the challenge of rumour stance classification, which involves identifying the attitude of Twitter users towards the truthfulness of the rumour they are discussing. Stance classification is considered to be an importan...

متن کامل

Stance Detection with Bidirectional Conditional Encoding

Stance detection is the task of classifying the attitude Previous work has assumed that either the target is mentioned in the text or that training data for every target is given. This paper considers the more challenging version of this task, where targets are not always mentioned and no training data is available for the test targets. We experiment with conditional LSTM encoding, which builds...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018